Skip to main content

8

Q1. If A, B, C are interior angles of ABC, show that: cosec2 - tan2 = 1

Solution

= 1 (since, sec2 = 1 + tan2)
Q2. If acos θ + bsin θ = 4 and asin θ - bcos θ = 3, then a2 + b2 is
  • 1) 7
  • 2) 25
  • 3) 12
  • 4) None

Solution

  acosθ plus θsinθ equals 4
squaring space both space sides comma
open parentheses acosθ plus bsinθ close parentheses squared equals 4 squared
rightwards double arrow straight a squared cos squared straight theta plus straight b squared sin squared straight theta plus 2 abcosθsinθ equals 16... left parenthesis straight i right parenthesis
asinθ minus bcosθ equals 3
Squaring comma
open parentheses asinθ minus bcosθ close parentheses squared equals 3 squared
rightwards double arrow straight a squared cos squared straight theta plus straight b squared sin squared straight theta minus 2 abcosθsinθ equals 9.... left parenthesis ii right parenthesis
Adding space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis
rightwards double arrow straight a squared open parentheses cos squared straight theta plus sin squared straight theta close parentheses plus straight b squared open parentheses cos squared straight theta plus sin squared straight theta close parentheses equals 25
rightwards double arrow open parentheses straight a squared plus straight b squared close parentheses open parentheses cos squared straight theta plus sin squared straight theta close parentheses equals 25
rightwards double arrow straight a squared plus straight b squared equals 25
Q3. If cot space straight theta equals 7 over 8, then  equals to:
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Q4. If tan = 3 sin, find the value of sin2 - cos2

Solution

Q5. The express sin A in terms of cot A is:
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Q6. Prove that (cosec - cot)2 =

Solution

Q7. If + β=900 and :β=2:1, then sin: sin β=
  • 1) 1:
  • 2) 1:3
  • 3) 1:2
  • 4) :1

Solution

Q8. If 3 cos = 1, then the value of cosec is :
  • 1)
  • 2)
  • 3)
  • 4)

Solution

cos = 1 third equals base over hypotenuse Let base = k and hypotenuse = 3k Perpendicular =
Q9. If figure, ABC is right angled triangle, right angled at C. D is mid-point of BC. Show that

Solution

In ABC, In ACD, begin mathsize 12px style tan space straight ϕ equals AC over CD end style
Q10. Without using trigonometric table prove that: tan 1o tan 11o tan 21o tan 69o tan 79o tan 89o = 1

Solution

tan 1o tan 11o tan 21o tan 69o tan 79o tan 89o = tan (90o - 89o) tan (90o - 79o) tan (90o - 69o) tan 69o tan 79o tan 89o = cot 89o cot 79o cot 69o tan 69o tan 79o tan 89o = cot 89o cot 79o cot 69o = 1
Q11.

Solution

Q12. In figure, AC = 13 cm, BC = 12 cm, then sec equals :
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Q13. If 6 cot + 2 cosec = cot + 5 cosec, then cos is:
  • 1)
  • 2)
  • 3)
  • 4)

Solution

6 cot + 2 cosec = cot + 5 cosec 5 cot = 3 cosec
Q14. In figure, if D is mid-point of BC, the value of fraction numerator cot space straight y degree over denominator cot space straight x degree end fraction is:
  • 1)
  • 2)
  • 3) 2
  • 4)

Solution

Q15. If tan 2A = cot (A - 18o), then the value of A is
  • 1) 27o
  • 2) 24o
  • 3) 36o
  • 4) 18o

Solution

Q16. Find the length of the diagonals of the rhombus shown in the figure given below.

Solution

We know that the diagonals of a rhombus bisect each other at right angles. In AOD,
Q17. In the given figure find tan A - cot C.

Solution

Q18. The value of fraction numerator cot space 45 degree over denominator sin space 30 degree plus space cos space 60 degree end fractionis equal to:
  • 1)
  • 2) 1
  • 3)
  • 4)

Solution

Q19. Prove that:.

Solution

= 1 + tan2 = sec2
Q20. [cos4 A - sin4A] is equal to:
  • 1) 2 cos2 A + 1
  • 2) 2 sin2 A - 1
  • 3) 2 sin2 A + 1
  • 4) 2 cos2 A - 1

Solution

cos4 A - sin4A = cos4 A - (1 - cos2A)2 = cos4 A - (1 + cos4A - 2 cos2A) = 2 cos2 A - 1
Q21. Prove that

Solution

Hence, R.H.S. = L.H.S.
Q22. If sin (A - B) = and cos (A + B) = , then the value of B is:
  • 1) 15o
  • 2) 60o
  • 3) 45o
  • 4) 0o

Solution

Q23.

Solution

Q24. If tan = 3 sin, prove that sin2 - cos2 =.

Solution

LHS = sin2 - cos2 = 1 - 2 cos2 [since sin2 = 1 - cos2] =1 - 2 = RHS
Q25. If x = 2 , y = 2cos squared straight theta + 1, then the value of x + y is:
  • 1) 1
  • 2) 2
  • 3) 3
  • 4)

Solution

straight x plus straight y equals 2 sin squared straight theta space plus 2 cos squared straight theta plus 1
straight x plus straight y equals 2 plus 1 equals 3
Q26. If cos x = cos 60o cos 30o + sin 60o sin 30o, then the value of x is
  • 1) 60o
  • 2) 15o
  • 3) 30o
  • 4) 45o

Solution

cos x = cos 60o cos 30o + sin 60o sin 30o We know cos 30o = Hence, x = 30o
Q27.   open parentheses fraction numerator cos space straight A over denominator cot space straight A end fraction plus sin space straight A close parentheses space is
  • 1) sec A
  • 2) 2 cos A
  • 3) 2 sin A
  • 4) cot A

Solution

fraction numerator cos space straight A over denominator cot space straight A end fraction plus sin space straight A
equals space fraction numerator cos begin display style space end style begin display style straight A end style over denominator begin display style fraction numerator cos begin display style space end style begin display style straight A end style over denominator sin begin display style space end style begin display style straight A end style end fraction end style end fraction plus sin space straight A

equals sin space straight A space plus space sin space straight A
equals 2 sin space straight A
Q28. Prove that (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2A + cot2A.

Solution

LHS = (sin A + cosec A)2 + (cos A + sec A)2 = sin2A + cosec2A + 2 sin A cosec A + cos2A + sec2A + 2cos A sec A = 1 + 2 + 2 + cosec2 A + sec2A = 1 + 2 + 2 + cot2 A + 1 + 1 + tan2A = 7 + cot2A + tan2A = RHS
Q29. sin (60o + ) - cos (30o - ) is equal to (where (60o + ) and (30o - ) are both acute angles):
  • 1) 1
  • 2) 2 sin
  • 3) 2 cos
  • 4) 0

Solution

sin (60o + ) - cos (30o - ) = sin (60o + ) - cos (90o - (60o + )) = sin (60o + ) - sin (60o + ) = 0
Q30. Prove that 1 +

Solution

LHS = = 1 + = 1 + = 1 + cosec - 1 = cosec = = RHS
Q31. If sin (60o - ) = 1, then is:
  • 1) 45o
  • 2) 30o
  • 3) 60o
  • 4) 15o

Solution

sin (60o - ) = 1 sin (60o - ) = fraction numerator 1 over denominator square root of 2 end fraction= sin 45o 60o - = 45o = 15o
Q32. Prove that

Solution

Q33.

Solution

Q34. If tan + sin = m and tan - sin = n, show that m2 - n2 = 4

Solution

m2 - n2 = (m - n) (m + n) = (2 sin ) (2 tan ) = 4 sin tan ... (i) mn = (tan + sin ) (tan - sin ) = tan2 - sin2 ... (ii) (i) and (ii) m2 - n2 = 4 .
Q35. Prove that cos8 - sin8 = (cos2 - sin2) (1 - 2sin2 cos2)

Solution

Q36. The value of is
  • 1) sin A.cos A
  • 2) 1-sin A.cos A
  • 3) 1+sin A.cos A
  • 4) tan A

Solution

=(1+ sin A.cos A)[]
Q37. If A, B, C are interior angles of ABC, show that:

Solution

cosec2 - tan2 = cosec2 = sec2 = 1
Q38. Prove: = cosec  + cot 

Solution

L.H.S. =
Q39. If x = r sin A cos C, y = r sin A sin C, z = r cos A, prove that r2 = x2 + y2 + z2.

Solution

x = r sinA cosC, y = r sinA sinC, z = r cosA x2 + y2 + z2 = r2 sin2A cos2C + r2 sin2A sin2C + r2 cos2A = r2 sin2A (cos2C + sin2C) + r2 cos2A = r2sin2A + r2cos2A = r2(sin2A + cos2A) = r2 (since, sin2+ cos2 = 1)
Q40. If sin = , find the value of

Solution

sin = tan =
Q41. In figure below, ABC is right-angled at B and tan A = 4 over 3. If AC = 15 cm, then the length of AB is :
  • 1) 9 cm
  • 2) 4 cm
  • 3) 12 cm
  • 4) 3 cm

Solution

tan space straight A space equals BC over AB
BC over AB equals 4 over 3
Let space BC equals space 4 space straight k space and space AB equals 3 space straight k
AC squared equals AB squared plus BC squared
225 equals 9 space straight k squared plus 16 space straight k squared
straight k squared equals 9
straight k equals 3
rightwards double arrow AB equals 3 cross times 3 equals 9
Q42. In the figure given below, ACB = 90o, BDC = 90o, CD = 4 cm, BD = 3 cm, AC = 12 cm. cos A - sin A is equal to:
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Applying Pythagoras theorem, BC2 = CD2 + BD2 = (4 cm)2 + (3 cm)2 BC = 5 cm AB2 = AC2 + BC2 = (12 cm)2 + (5 cm)2 AB = 13 cm cos A - sin A
Q43. In the figure, if PS = 14 cm, the value of tan a is equal to:
  • 1)
  • 2)
  • 3)
  • 4)

Solution

tan a = … (1) ST = PS - TP = 14 cm - 5 cm = 9 cm Using Pythagoras theorem in triangle PQR, we have: (13)2 = PQ2 + (5)2 PQ2 = 169 - 25 = 144 PQ = 12 cm TR = PQ = 12 cm From (1), tan a = 12 over 9
Q44. If x = a cos + b sin and y = b cos - a sin , then prove that x2 + y2 = a2 + b2.

Solution

x = a cos + b sin ...(1) y = b cos - a sin ...(2) Squaring and adding, we get, x2 + y2 = a2 cos2 + b2 sin2 + 2ab sin cos + b2 cos2 + a2 sin2 - 2ab sin cos = a2 (sin2 + cos2) + b2(sin2 + cos2) = a2 + b2 Hence, proved
Q45. The value of cos θ cos(90° - θ) - sin θ sin (90° - θ) is:
  • 1) 1
  • 2) 2
  • 3) -1
  • 4) 0

Solution

cos θ cos(90° - θ) - sin θ sin (90° - θ) = cos θ sin θ - sin θ cos θ = 0
Q46. If sin = cos, then value of is :
  • 1) 0o
  • 2) 90O
  • 3) 30o
  • 4) 45o

Solution

Given, We know sin 45 degree space equals fraction numerator 1 over denominator square root of 2 end fraction space equals space cos 45 degree space Thus,
Q47. The value of 5 tan2straight theta- 5 sec2 straight thetais:
  • 1) 5
  • 2) -5
  • 3) 0
  • 4) 1

Solution

5 tan2 - 5 sec2 =5 tan2 - 5 (1 + tan2) = 5 tan2 - 5 - 5 tan2 = -5
Q48. If sin θ + cos θ = sin (90° - θ), then find the value of tan θ.

Solution

begin mathsize 12px style sinθ space plus space cosθ space equals space square root of 2 space sin open parentheses 90 degree minus straight theta close parentheses
sinθ space plus space cosθ space equals space space square root of 2 cosθ space
sinθ space equals space space square root of 2 cosθ space minus space space cosθ
sinθ space equals space cosθ space open parentheses square root of 2 minus 1 close parentheses
fraction numerator sinθ over denominator cosθ space end fraction equals square root of 2 minus 1
tanθ space equals space square root of 2 minus 1 end style
Q49. [(sec A + tan A) (1 - sin A)] on simplification gives:
  • 1) sec2 A
  • 2) sin A
  • 3) tan2 A
  • 4) cos A

Solution

(sec A + tan A) (1 - sin A)
Q50. Without using trigonometric tables, prove that fraction numerator size 12px cos to the power of size 12px 2 size 12px 49 size 12px degree size 12px space size 12px plus size 12px space size 12px cos to the power of size 12px 2 size 12px 41 size 12px degree over denominator size 12px sin to the power of size 12px 2 size 12px 31 size 12px degree size 12px space size 12px plus size 12px space size 12px sin to the power of size 12px 2 size 12px 59 size 12px degree end fraction size 12px space size 12px plus size 12px space size 12px 2 size 12px tan size 12px 35 size 12px degree size 12px space size 12px tan size 12px 55 size 12px degree size 12px equals size 12px 3

Solution

fraction numerator size 12px cos to the power of size 12px 2 size 12px 49 size 12px degree size 12px space size 12px plus size 12px space size 12px cos to the power of size 12px 2 size 12px 41 size 12px degree over denominator size 12px sin to the power of size 12px 2 size 12px 31 size 12px degree size 12px space size 12px plus size 12px space size 12px sin to the power of size 12px 2 size 12px 59 size 12px degree end fraction size 12px space size 12px plus size 12px space size 12px 2 size 12px tan size 12px 35 size 12px degree size 12px space size 12px tan size 12px 55 size 12px degree size 12px equals size 12px 3 = 1 + 2 1 = 1 + 2 = 3
Q51. From the figure, the value of cosec A + cot A is :
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Q52. If cot A = 12 over 5, then the value of (sin A + cos A) cosec A is :
  • 1) 1
  • 2)
  • 3)
  • 4)

Solution

  open parentheses sin space straight A space plus space cos space straight A close parentheses cross times cosec space straight A
sin space straight A space cross times cosec space straight A space plus space cos space straight A space cross times cosec space straight A
equals 1 plus fraction numerator cos space straight A over denominator sin space straight A end fraction
equals 1 plus cot space straight A
equals 1 plus 12 over 5
equals 17 over 5
Q53. If cosec2 (1 + cos) (1 - cos) = , then the value of is:
  • 1) cos2
  • 2) -1
  • 3) 0
  • 4) 1

Solution

  cosec squared straight theta space open parentheses 1 plus cos space straight theta close parentheses open parentheses 1 minus cos space straight theta close parentheses
cosec squared straight theta space open parentheses 1 minus cos squared space straight theta close parentheses
cosec squared straight theta space sin squared space straight theta
Q54. The maximum value of is:
  • 1) 0
  • 2)
  • 3)
  • 4) 1

Solution

We know and the maximum value of sin is 1. Hence, the maximum value of is 1.
Q55. If A, B, C are interior angles of ABC, show that:

Solution

= = 1
Q56. If cos (40o + A) = sin 30o, the value of A is:
  • 1) 40o
  • 2) 20o
  • 3) 30o
  • 4) 60o

Solution

cos (40o + A) = sin 30o cos (40o + A) = sin (90 - 60o) cos (40o + A) = cos 60o 40o + A = 60o A = 20o
Q57.

Solution

Q58. Without using trigonometric tables, prove that:

Solution

= 1 + 1 = 2
Q59. Given that sin A = and cos B = then the value of A + B is:
  • 1) 15o
  • 2) 30o
  • 3) 75o
  • 4) 45o

Solution

Q60. ABC is right angled at A, the value of tan B tan C is:
  • 1) 0
  • 2) -1
  • 3) None of the above
  • 4) 1

Solution

   tan space straight B space cross times space tan space straight C equals AC over AB cross times AB over AC equals 1
Q61. If cosec = x + , prove that: cosec + cot = 2x or

Solution

We know: 1 + cot2 = cosec2 cot2 = cosec2 - 1 cot2 = = x2 + = x2 + = cot = cot = x - or cot = -x + cosec + cot = 2x or cosec + cot x =
Q62. begin mathsize 12px style If space cos open parentheses straight alpha space plus space straight beta close parentheses space equals space 0 comma space then space sin open parentheses straight alpha space minus space straight beta close parentheses space can space be space reduced space to space colon end style
  • 1) sin space 2 straight alpha
  • 2) cos space straight beta
  • 3) sin space straight alpha
  • 4) cos space 2 straight beta

Solution

begin mathsize 12px style cos open parentheses straight alpha space plus space straight beta close parentheses space equals space 0
straight alpha space plus space straight beta space equals space 90 degree
straight alpha space equals space 90 degree space minus space straight beta space
sin open parentheses straight alpha space minus space straight beta close parentheses space
equals space sin open parentheses 90 degree space minus space straight beta space minus space straight beta close parentheses
equals space sin open parentheses 90 degree space minus space 2 straight beta close parentheses
equals space cos 2 straight beta end style
Q63. Prove the following trigonometric identities. square root of fraction numerator 1 minus cosA over denominator 1 plus cosA end fraction end root plus square root of fraction numerator 1 plus cosA over denominator 1 minus cosA end fraction end root equals 2 cosecA

Solution

table attributes columnalign left end attributes row cell Consider text   the   LHS ,  end text square root of fraction numerator 1 minus cosA over denominator 1 plus cosA end fraction end root plus square root of fraction numerator 1 plus cosA over denominator 1 minus cosA end fraction end root colon end cell row cell square root of fraction numerator 1 minus cosA over denominator 1 plus cosA end fraction end root plus square root of fraction numerator 1 plus cosA over denominator 1 minus cosA end fraction end root equals fraction numerator open parentheses square root of 1 minus cosA end root close parentheses squared plus open parentheses square root of 1 plus cosA end root close parentheses squared over denominator square root of 1 plus cosA end root square root of 1 minus cosA end root end fraction end cell row cell text                                                end text equals fraction numerator 1 minus cosA plus 1 plus cosA over denominator square root of 1 minus cos squared straight A end root end fraction end cell row cell text                                                end text equals fraction numerator 2 over denominator square root of sin squared straight A end root end fraction end cell row cell text                                                end text equals 2 over sinA end cell row cell text                                                end text equals 2 cosecA end cell row cell text                                                end text equals RHS end cell row cell Hence text   proved. end text end cell end table
Q64. Prove that sin A(1 + tan A) + cos A (1 + cot A) = sec A + cosec A.

Solution

LHS = sin A(1 + tan A) + cos A (1 + cot A) = sin A
Q65. Prove that

Solution

Q66. If sin (20o + ) = cos 30o, then the value of is:
  • 1) 30o
  • 2) 50o
  • 3) 40o
  • 4) 20o

Solution

sin (20o + ) = cos 30o We know cos 30o = sin (20o + ) = = sin 60o 20o + = 60o = 40o
Q67. Find the value of tan 60o geometrically.

Solution

Consider an equilateral ABC and let a be the length of each side of ABC. AB = BC = CA = a Draw AD BC ABD ACD BD = DC BD = BC = a and BAD = CAD BAD = CAD = 30o Using Pythagoras theorem in ABD, AD2 = AB2 - BD2
Q68. Given that cos = straight m over straight n then tan is equal to
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Q69. In figure below sec alpha is:  
  • 1)
  • 2)
  • 3)
  • 4)

Solution

Using Pythagoras theorem in ABC, Using Pythagoras theorem in ACD,
Q70. Prove that : (sin + cosec)2 + (cos + sec)2 = 7 + tan2 + cot2

Solution

LHS = (sin + cosec)2 + (cos + sec)2 = sin2 + cosec2 + 2sin cosec + cos2 + sec2 + 2cos sec = sin2 + cos2 + 2 + 2 + cosec2 + sec2 = 1 + 4 + (1 + cot2) + (1 + tan2) = 7 + tan2 + cot2 = RHS
Q71. In ABC, right angled at B, if cot A=  then the value of cos A sin C + sin A cos C
  • 1)
  • 2) 1
  • 3)
  • 4) 3

Solution

Given that, cot A = =fraction numerator square root of 3 over denominator 1 end fraction If BC = k then AB = k By Pythagoras theorem, we have: AC2 = AB2 + BC2 = (k)2 + (k)2 AC2 = 3k2 + k2 = 4k2 Thus, AC = 2k Hence, sin A =1 halfand cos A = fraction numerator square root of 3 over denominator 2 end fraction Also, sin C = fraction numerator square root of 3 over denominator 2 end fractionand cos C = 1 half Therefore, cos A sin C + sin A cos C =
Q72. If cos A + cos2 A = 1, then sin2 A + sin4 A is
  • 1) -1
  • 2) 1
  • 3) 2
  • 4) 0

Solution

Q73. If and f are the acute angles of a right triangle, and

Solution

The two angles and f being the acute angles of a right triangle must be complementary angles. So, Substituting, in above equation,
Q74.

Solution

Q75. Given 15cot A = 8, find sin A and sec A.

Solution

Q76. Prove that

Solution

Q77. If sin + sin2 = 1, then find the value of cos2 + cos4.

Solution

sin + sin2 = 1 sin = 1 - sin2 = cos2 sin2 = cos4 1 - cos2 = cos4 cos2 + cos4 = 1
Q78. Prove that: cos sin -

Solution

LHS = cos sin - = cos sin - = cos sin - sin3 cos - cos3 sin = cos sin - sin cos (sin2 + cos2) = cos sin - sin cos 1 [Since, sin2 + cos2 = 1] = 0 = RHS
Q79. If x = 3 sec2 - 1, y = tan2 - 2 then x - 3y is equal to
  • 1) 4
  • 2) 3
  • 3) 8
  • 4) 5

Solution

x = 3 sec2 - 1, y = tan2 - 2 x - 3y = 3 sec2 - 1 - 3tan2 + 6 = 3(1) + 5 = 8 (Since, sec2 - tan2 = 1)
Q80. Prove that:

Solution

= 1 = RHS
Q81. If x. tan 45o. cot60o = sin 30o. cosec60o, then the value of x is:
  • 1) 1
  • 2)
  • 3)
  • 4)

Solution

x. tan 45o. cot60o = sin 30o. cosec60o
Q82.

Solution

Q83. ABC is a right triangle right angled at C, then the value cosec2A - tan2B is :
  • 1) -1
  • 2) -2
  • 3) 2
  • 4) 1

Solution

cosec2A - tan2B
Q84. If 7 sin2 q + 3 cos2 q = 4, then prove that sec q + cosec q = 2 +.

Solution

7 sin2 + 3 cos2 = 4 7 sin2 + 3 (1 - sin2 ) = 4 sin = sec 30o + cosec30o =
Q85. If 5 tan = 4, find the value of

Solution

5 tan = 4 5 sin = 4 cos
Q86. Prove that:

Solution

Q87. Prove that (cosec A - sin A) (sec A - cos A) =

Solution

LHS = (cosec A - sin A) (sec A - cos A) RHS = Hence, LHS = RHS
Q88. If sin (A + B) = cos (A - B) = and A,B (A >B) are acute angles, find the value of A and B.

Solution

Given, sin (A + B) = cos (A - B) = Therefore, A + B = 60o ; A - B = 30o Solving for A and B, we get, A = 45o and B = 15o
Q89. If tan + sin = m and tan - sin = n Show that (m2 - n2)2 = 16 mn

Solution

tan + sin = m tan - sin = n (m + n) (m - n) = 2 tan 2 sin m2 - n2 = 4 tan sin L.H.S. = (m2 - n2)2 = 16 tan2 sin2 R.H.S. = 16 mn = 16 (tan + sin ) (tan - sin ) = 16 (tan2 - sin2 ) = 16 = 16 = 16 = 16 tan2 sin2 L.H.S. = R.H.S. (m2 - n2)2 = 16mn
Q90. If tan = 3 sin , find the value of sin2 - cos2

Solution

tan = 3 sin
Q91. If A, B, C are the interior angles of ΔABC, then prove that Error converting from MathML to accessible text..

Solution

begin mathsize 12px style Since space straight A space plus space straight B space plus space straight C space equals space 180 degree
straight A space plus space straight B space equals space 180 degree space minus space straight C comma
Now comma space straight L. straight H. straight S equals cos open parentheses fraction numerator straight A plus straight B over denominator 2 end fraction close parentheses
equals cos open parentheses fraction numerator 180 degree minus straight C over denominator 2 end fraction close parentheses
equals cos open parentheses 90 minus straight C over 2 close parentheses
equals sin straight C over 2
equals straight R. straight H. straight S. end style
Q92. If = n then Show that (m2 + n2) cos2 = n2.

Solution

Q93. If 3 cot A = 4, find the value of

Solution

Q94. If cos = 1 half, then the value of cos [cos - sec] is:
  • 1)
  • 2)
  • 3)
  • 4)

Solution

cos = 1 half
Q95. Evaluate:

Solution

Q96. Prove that .

Solution

LHS = = 1 + cos A = RHS
Q97. In fig., PQR is right angled at Q, QR = 6 cm QPR = 60o. Find the length of PQ and PR.  

Solution

Q98.

Solution

Q99. Prove that

Solution

Q100. In triangle ABC, right angled at A, if AB = 5, AC = 12 and BC = 13, find sin B, cos C and tan B.

Solution

Q101. Evaluate:  

Solution

Q102. If sin = 1 half, then the value of sin (sin - cosec) is
  • 1)
  • 2)
  • 3)
  • 4)

Solution

  sin space straight theta space open parentheses sin space straight theta space minus space cosec space straight theta close parentheses equals 1 half open parentheses 1 half minus 2 close parentheses equals fraction numerator negative 3 over denominator 4 end fraction
Q103. Prove that

Solution

L.H.S =
Q104. Prove:

Solution

Q105. If a cot θ+ b cosec θ = p and b cot θ + a cosec θ= q then p2 - q2 is equal to
  • 1) a2 - b2
  • 2) a2 + b2
  • 3) b2 + a2
  • 4) b2 - a2

Solution

p = a cot θ + b cosec θ q = b cot θ + a cosec θ p2 - q2 = (a cot θ + b cosec θ)2 - (b cot θ + a cosec θ)2 = a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ - b2 cot2 θ - a2 cosec2 θ - 2ab cot θ cosec θ = a2 (cot2 θ - cosecθ) + b2 (cosec2 θ - cot2 θ) = b2 - a2 (Since, cosec2 A - cot2 A = 1)
Q106.

Solution

Q107. If tan (A + B) = and tan (A - B) = , 0o < A + B 90o; A > B find A and B.

Solution

Given, tan (A + B) = and tan (A - B) = Therefore, A + B = 60o; A - B = 30o Solving the two equations, we get, A = 45o ; B = 15o
Q108. Prove that tan2 + cot2 + 2 = sec2 cosec2

Solution

= cosec2 sec2 = RHS
Q109. If cos - sin = sin, prove that cos + sin = cos .

Solution

Given cos - sin = sin
Q110. If sec 4A = cosec (A - 20o) where 4 A is an acute angle, fine the value of A.

Solution

Given, sec 4A = cosec (A - 20o) Since, sec 4 A = cosec (90o - 4 A) (90o - 4 A) and (A - 20o) are acute angles 90o - 4 A = A - 20o A = 22o
Q111. Prove that:

Solution

Q112.

Solution

 
Q113. Prove that:

Solution

Q114. If a cos - b sin = c, prove that (a sin + b cos ) = .

Solution

(a cos - b sin )2 = c2 a2 cos2 + b2 sin2 - 2 ab sin . cos = c2 a2 (1 - sin2) + b2 (1 - cos2) - 2 ab sin . cos = c2 a2 + b2 - c2 = (a sin + b cos )2 (a sin + b cos ) =
Q115.

Solution

Q116. Prove that .

Solution

Q117. Evaluate:

Solution

begin mathsize 12px style fraction numerator 2 sin 68 degree over denominator cos 22 degree end fraction minus 2 fraction numerator begin display style tan end style open parentheses 90 degree minus 15 degree close parentheses over denominator 5 cot 15 degree end fraction minus fraction numerator 3 tan 45 degree space tan 20 degree space tan 40 degree space tan 50 degree space tan 70 degree over denominator 5 open parentheses sin squared 70 degree space plus space sin squared 70 degree close parentheses end fraction
equals fraction numerator 2 cos open parentheses 90 degree minus 68 degree close parentheses over denominator cos begin display style 22 end style begin display style degree end style end fraction minus fraction numerator 2 cot 15 degree over denominator 5 cot 15 degree end fraction minus fraction numerator 3 cross times 1 cross times cot open parentheses 90 degree minus 20 degree close parentheses cot open parentheses 90 degree minus 40 degree close parentheses tan 50 degree tan 70 degree over denominator 5 open curly brackets cos squared open parentheses 90 degree minus 20 degree close parentheses space plus space space sin squared 20 degree close curly brackets end fraction
equals fraction numerator 2 cos 22 degree over denominator cos 22 degree end fraction minus 2 over 5 minus fraction numerator 3 cot 70 degree space cot 50 degree space tan 50 degree tan 70 degree over denominator 5 open parentheses space cos squared 20 degree plus sin squared 20 degree close parentheses end fraction
equals 2 minus 2 over 5 minus 3 over 5
equals fraction numerator 10 minus 2 minus 3 over denominator 5 end fraction
equals 5 over 5
equals 1 end style
Q118. If sin + cos = m and sec+cosec = n, prove that n ( = 2m.

Solution

Given: sin + cos = m and sec + cosec = n Consider L.H.S. = n = = =
Q119. Prove that

Solution

L.H.S.
Q120. Evaluate cos 30o cos 45o - sin 30o sin 45o.

Solution

Q121. In , right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Find the value of sin P.

Solution

Given, PR + QR = 25 cm and PQ = 5 cm In right PQR, PR2 = PQ2 + QR2 (by Pythagoras theorem) (25 − QR)2 = 52 + QR2 QR = 12 PR + QR = 25 PR = 13 sin P =
Q122. Prove that = 2 sec .

Solution

LHS =
Q123. If A + B = 90o, then prove that

Solution

Q124. Prove that:

Solution

(since, sin2A + cos2A = 1)
Q125. Evaluate: begin mathsize 12px style fraction numerator sec squared space left parenthesis 90 degree minus straight theta right parenthesis minus cot squared space straight theta over denominator 2 left parenthesis sin squared space 25 degree plus sin squared space 65 degree right parenthesis end fraction plus fraction numerator 2 cos squared space 60 degree space tan squared space 28 degree space tan squared space 62 degree over denominator 3 left parenthesis sec squared space 43 degree minus cot squared space 47 degree right parenthesis end fraction plus fraction numerator cot space 40 degree over denominator tan space 50 degree end fraction end style

Solution

begin mathsize 12px style fraction numerator sec squared space left parenthesis 90 degree minus straight theta right parenthesis minus cot squared space straight theta over denominator 2 left parenthesis sin squared space 25 degree plus sin squared space 65 degree right parenthesis end fraction plus fraction numerator 2 cos squared space 60 degree space tan squared space 28 degree space tan squared space 62 degree over denominator 3 left parenthesis sec squared space 43 degree minus cot squared space 47 degree right parenthesis end fraction plus fraction numerator cot space 40 degree over denominator tan space 50 degree end fraction
equals fraction numerator cosec squared space straight theta minus cot squared space straight theta over denominator 2 left square bracket sin squared space 25 degree plus sin squared space left parenthesis 90 degree minus 25 degree right parenthesis right square bracket end fraction plus fraction numerator 2 cos squared space 60 degree space tan squared space 28 degree space tan squared space left parenthesis 90 degree minus 28 degree right parenthesis over denominator 3 left square bracket sec squared space 43 degree minus cot squared space left parenthesis 90 degree minus 43 degree right parenthesis right square bracket end fraction plus fraction numerator cot space 40 degree over denominator tan space left parenthesis 90 degree minus 40 degree right parenthesis end fraction
equals fraction numerator 1 over denominator 2 left parenthesis 1 right parenthesis end fraction plus fraction numerator 2 cross times open parentheses begin display style 1 half end style close parentheses squared space tan squared space 28 degree space cot squared space 28 degree over denominator 3 left square bracket sec squared space 43 degree minus tan squared space 43 degree right square bracket end fraction plus fraction numerator cot space 40 degree over denominator cot space 40 degree end fraction
equals 1 half plus fraction numerator 2 cross times begin display style 1 fourth end style over denominator 3 left parenthesis 1 right parenthesis end fraction plus 1
equals 1 half plus 1 over 6 plus 1
equals fraction numerator 3 plus 1 plus 6 over denominator 6 end fraction
equals 10 over 6
equals 5 over 3 end style
Q126. Prove the following identity: (sin + sec )2 + (cos + cosec )2 = (1 + sec cosec )2.

Solution

Consider L.H.S. = (sin + sec )2 + (cos + cosec )2 = sin2 + sec2 + 2 tan + cos2 + cosec2 + 2 cot = 1 + sec2 cosec2 + 2 sec cosec = (1 + sec cosec )2 = R.H.S
Q127.

Solution

Q128. Prove the following:

Solution

Q129. Prove that

Solution

= 2 sec A = RHS
Q130.

Solution

Q131.

Solution

Q132. Prove that tan 1o tan 2o tan 3o ... tan 89o = 1

Solution

Q133.

Solution

Q134. Prove that sec4 A - sec2 A = tan4 A + tan2 A

Solution

L.H.S = sec4 A - sec2 A         = sec2 A (sec2 A - 1)         = (1 + tan2 A) (tan2 A)         = tan2 A + tan4 A= R.H.SHence sec4  A - sec2 A  = tan4 A + tan4 A
Q135. Prove that: sec2 + cot2 (90o - ) = 2 cosec2 (90o - ) - 1

Solution

L.H.S = sec2 + cot2 (90o - ) = sec2 + tan2 = sec2 + sec2 - 1 = 2sec2 - 1 = 2 cosec2‑ (90o - ) - 1
Q136. Prove that 2(cos30o + sin 60o) = (1+ cos 60o + sin30o).

Solution

Q137.

Solution

Q138.

Solution

Q139. Given that sin (A + B) = sin A cos B + cos A sin B, find the value of sin 75o.

Solution

Given, sin (A + B) = sin A cos B + cos A sin B sin 75o = sin (45o + 30o) = sin 45o cos 30o + cos 45o sin 30o
Q140. Evaluate: 2sin2 30o - 3cos2 45o + tan2 60o

Solution

Q141. If cosec (A - B) = 2, cot (A + B) = , 0o < (A + B) 90o, A > B, then find A and B.

Solution

cosec (A - B) = 2 sin(A - B) = A - B = 30o … (1) cot (A + B) = A + B = 60o … (2) Solving (1) and (2), we get, A = 45o and B = 15o
Q142.

Solution

Q143. Prove that

Solution

= 2 sec
Q144. If tan= , find the value of .

Solution

tan = (given)
Q145. Prove that: (1 + cot - cosec ) (1 + tan + sec ) = 2

Solution

(1 + cot - cosec ) (1 + tan + sec )
Q146. Prove that

Solution

Q147. If 5 tan = 4, find the value of

Solution

5 tan = 4 tan = 5 sin = 4 cos =
Q148. In figure ABCD is rectangle in which segments AP and AQ are drawn. Find the length (AP + AQ).

Solution

AP + AQ = 120 cm + 60 cm = 180 cm

Comments

Popular posts from this blog

7

Q1. Using section formula, show that the points A(-3,-1), B(1,3) and C(-1,1) are collinear. Solution Let C(-1,1) divides AB in the ratio of k : 1 Using section formula, we have: (k - 3)/(k + 1) = -1 … (1) (3k - 1)/(k + 1) = 1 … (2) From (1), k - 3 = -k - 1 2k = 2 k = 1 Thus, C divides AB in the ratio 1: 1, that is, C is the mid-point of AB. A, B and C are collinear Q2. Find the ratio in which the line joining points (1, 1) and (2, 4) is divided by the line 4x + y = 6.  1) 1:2 2) 4:5 3) 1:4 4) 1:6 Solution Let the ratio be k:1. The coordinates of the point dividing the line joining points (1, 1) and (2, 4) are 4x + y = 6 ... (i) Put x =  and y =  in (i) The ratio is 1:6. Q3. Find the value of 's' if the...

2

Q1. If the two zeroes of the quadratic polynomial 7x 2 - 15x - k are reciprocals of each other, the value of k is: 1) 5 2) 3) -7 4) 7 Solution We know that if the roots are reciprocal of each other leads to product of the roots being equal to 1. The product of roots = Q2. Find the zeros of the polynomial f(x) = 6x 2 - 3  Solution  f(x) = 6x 2 - 3        = 3(2x 2 - 1)        =  The zeros of f(x) are given by f(x) = 0 That is  = 0 Hence the zeros of f(x) = 6x 2 - 3 are: and  . Q3. If and are the zeroes of the polynomial 4x 2 + 3x + 7, then is equal to: 1) 2) 3) ...

13

Q1. How many coins 1.75 cm in diameter and 2 mm thick must be melted to form a cuboid of dimensions 11 cm 10 cm 7 cm? (take ) Solution Diameter of the coin = 1.75 cm Radius, r = Height = 2 mm = 0.2 cm Volume of 1 coin = r 2 h = 0.2 cm 3 Volume of cuboid = 11 10 7 cm 3 Since, the coins are melted to form a cuboid, so the total volumes of all coins will be equal to the volume of the cuboid. Let the number of coins be n. So, volume of n coins = volume of cuboid n = = 1600 Q2. If the radius and slant height of a cone are equal, then the surface area of the cone will be  1) 2πl 2 2) A or B 3) 2πl 2 4) 2πr 2 Solution The surface area of a cone = 𝜋r(l + r) According to the question, l = r The surface area of the cone = πr(l + l) = πr(r + r) = 2πr 2 or 2πl 2   Q3. T...